publications

* denotes co-first authorship. Check also my Google Scholar profile.

2025

  1. arXiv
    compositional_diffusion.png
    How compositional generalization and creativity improve as diffusion models are trained
    Alessandro Favero*, Antonio Sclocchi*, Francesco Cagnetta, Pascal Frossard, and 1 more author
    arXiv preprint, 2025
  2. ICLR
    susceptibility.png
    Unraveling the latent hierarchical structure of language and images via diffusion models
    Antonio Sclocchi*Alessandro Favero*, Noam Levi*, and Matthieu Wyart
    International Conference on Learning Representations, 2025
  3. ICLR
    lines.png
    LiNeS: Post-training layer scaling prevents forgetting and enhances model merging
    Ke Wang, Nikolaos Dimitriadis, Alessandro Favero, Guillermo Ortiz-Jimenez, and 2 more authors
    International Coference on Learning Representations, 2025
  4. PNAS
    phase.png
    A phase transition in diffusion models reveals the hierarchical nature of data
    Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart
    Proceedings of the National Academy of Sciences, 2025

2024

  1. CVPR
    multimodal.png
    Multi-modal hallucination control by visual information grounding
    Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, and 4 more authors
    IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024
  2. ICML
    disentanglement_2.png
    Task addition and weight disentanglement in closed-vocabulary models
    Adam Hazimeh*Alessandro Favero*, and Pascal Frossard
    ICML 2024 Efficient Systems for Foundation Models Workshop, 2024
  3. PhysRevX
    rhm.png
    How deep neural networks learn compositional data: The Random Hierarchy Model
    Francesco Cagnetta, Leonardo Petrini, Umberto Tomasini, Alessandro Favero, and 1 more author
    Physical Review X, 2024
  4. JSTAT
    computational_2.png
    Computational complexity of deep learning: fundamental limitations and empirical phenomena
    Boaz Barak, Annabelle Carrell, Alessandro Favero, Weiyu Li, and 2 more authors
    Journal of Statistical Mechanics: Theory and Experiment, 2024

2023

  1. NeurIPS
    task_arithmetic_2.png
    Task arithmetic in the tangent space: Improved editing of pre-trained models
    Guillermo Ortiz-Jimenez*Alessandro Favero*, and Pascal Frossard
    Advances in Neural Information Processing Systems, Oral (top 0.54%) , 2023
  2. ICML
    deepcnn.png
    What can be learnt with wide convolutional neural networks?
    Francesco Cagnetta*Alessandro Favero*, and Matthieu Wyart
    International Conference on Machine Learning, PMLR, 2023

2021

  1. NeurIPS
    learning_curves_local.png
    Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
    Alessandro Favero*, Francesco Cagnetta*, and Matthieu Wyart
    Advances in Neural Information Processing Systems, 2021
  2. NeurIPS
    diffeo.png
    Relative stability toward diffeomorphisms indicates performance in deep nets
    Leonardo Petrini, Alessandro Favero, Mario Geiger, and Matthieu Wyart
    Advances in Neural Information Processing Systems, 2021

2020

  1. Thesis
    Spectral analysis of infinitely wide convolutional neural networks
    Alessandro Favero
    Master’s Thesis, Sorbonne Université and Politecnico di Torino, 2020